Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Ergon ; 117: 104249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368655

RESUMO

Slippery surfaces due to oil spills pose a significant risk in various environments, including industrial workplaces, kitchens, garages, and outdoor areas. These situations can lead to accidents and falls, resulting in injuries that range from minor bruises to severe fractures or head trauma. To mitigate such risks, the use of slip resistant footwear plays a crucial role. In this study, we aimed to develop an Artificial Intelligence model capable of classifying footwear as having either high or low slip resistance based on the geometric characteristics and material parameters of their outsoles. Our model was trained on a unique dataset comprising images of 37 indoor work footwear outsoles made of rubber. To evaluate the slip resistant property of the footwear, all samples were tested using a cart-type friction measurement device, and the static and dynamic Coefficient of Frictions (COFs) of each outsole was determined on a glycerol-contaminated surface. Machine learning techniques were implemented, and a classification model was developed to determine high and low slip resistant footwear. Among the various models evaluated, the Support Vector Classifier (SVC) obtained the best results. This model achieved an accuracy of 0.68 ± 0.15 and an F1-score of 0.68 ± 0.20. Our results indicate that the proposed model effectively yet modestly identified outsoles with high and low slip resistance. This model is the first step in developing a model that footwear manufacturers can utilize to enhance product quality and reduce slip and fall incidents.


Assuntos
Inteligência Artificial , Glicerol , Humanos , Projetos Piloto , Sapatos , Desenho de Equipamento , Fricção , Aprendizado de Máquina , Pisos e Cobertura de Pisos
2.
Radiat Res ; 196(4): 394-403, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270782

RESUMO

Sequelae after pediatric cranial radiotherapy (CRT) result in long-term changes in brain structure. While past evidence indicates regional differences in brain volume change, it remains unclear how these manifest in the time course of change after CRT. In this study, we spatiotemporally characterized volume losses induced by cranial irradiation in a mouse model, with a dense sampling of measurements over the first week postirradiation. Wild-type mice received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In vivo magnetic resonance imaging was performed at one time point before, and 2-4 time points postirradiation in each mouse, with a particular focus on sampling during the first week after cranial irradiation. Volume changes across the brain were measured, and the degree and timing of volume loss were quantified across structures from a predefined atlas. Volume measurements across the brain after cranial irradiation revealed a ∼2-day delay in which volume is not significantly altered, after which time volume change proceeds over the course of four days. Volume losses were 3% larger and emerged 40% slower in white matter than in gray matter. Large volume loss was also observed in the ventricles. Differences in the timing and magnitude of volume change between gray and white matter after cranial irradiation were observed. These results suggest differences in the mechanism and/or kinetics underlying the associated radio-response, which may have implications in development.


Assuntos
Irradiação Craniana , Animais , Encéfalo , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...